Nelson de Moura Martins Gomes e Gustavo Vilela Momenté

UAV navigation using SLAM

S3o Paulo

2015

Nelson de Moura Martins Gomes e Gustavo Vilela Momenté

UAV navigation using SLAM

Monografia apresentada no Departamento de
Engenharia Mecatronica e Sistemas Mecani-
cos da Escola Politécnica da Universidade de
Sao Paulo para obtencao do titulo de En-
genheiro. Area de Concentracio: Engenharia
Mecatronica.

Universidade de Sao Paulo — USP
Escola Politécnica

Graduacao em Engenharia Mecatronica

Supervisor: Thiago Martins

Sao Paulo

2015

Nelson de Moura Martins Gomes e Gustavo Vilela Momenté
UAV navigation using SLAM/ Nelson de Moura Martins Gomes e Gustavo Vilela

Momenté. — S3o Paulo, 2015-
68 p. : il. (algumas color.) ; 30 cm.

Supervisor: Thiago Martins

Trabalho de Conclusdo de Curso — Universidade de S3o Paulo — USP

Escola Politécnica

Graduacdo em Engenharia Mecatrénica, 2015.

1.SLAM 2. GPU 3. PTAM 4. ROS 5. AR.Drone I. Escola Politécnica. Departamento
de Engenharia Mecatronica e de Sistemas Mecanicos. |l. Gomes, Nelson de Moura
Martins lll. Momenté, Gustavo Vilela

Nelson de Moura Martins Gomes e Gustavo Vilela Momenté

UAV navigation using SLAM

Monografia apresentada no Departamento de
Engenharia Mecatronica e Sistemas Mecani-
cos da Escola Politécnica da Universidade de
Sao Paulo para obtencao do titulo de En-
genheiro. Area de Concentracio: Engenharia
Mecatronica.

Trabalho aprovado. Sao Paulo, ~ de dezembro de 2015:

Thiago Martins
Orientador

Professor
Convidado 1

Professor
Convidado 2

Sao Paulo
2015

Este relatdrio é apresentado como requisito parcial para obtencao do titulo
de Engenheiro na Escola Politécnica da Universidade de Sao Paulo. E o
produto do nosso préprio trabalho, exceto onde indicado no texto. O
relatério pode ser livremente copiado e distribuido desde que a fonte seja
citada.

q : 1 U o i 2k
~ b ' AL -‘Jﬁ oD & Lide Yo i
AT

Abstract

Given the growing demand for autonomous vehicles, our project proposes a solution to
SLAM (Simultaneous Location And Mapping) using heterogeneous parallel computing. Our
objective is to study main solutions for monocular-SLAM, i.e, SLAM using a monocular
camera. Following, we propose some implementation modifications that adds parallel
processing to it. Results and data were collected using two commercially available drones
an AR.Drone 1.0 and an AR.Drone 2.0, parallel computations were carried on a CUDA-
enabled Nvidia GPU and communication with the drones were done using ROS (Robot

Operating System).

Keywords: Drone, SLAM, ROS, GPU, PTAM.

Resumo

Atendendo a crescente demanda por veiculos auténomos, nosso projeto propoe uma
solugao para SLAM (Simultaneous Location And Mapping) utilizando processamento
heterogéneo. Realizamos um estudo do estado da arte dos principais métodos de resolucao
do SLAM monocular, ou seja, SLAM usando somente uma camera monocular. Em seguida,
foram propostas modifica¢oes a implementagao para adicionar processamento em paralelo.
Coletou-se dados e resultados através de dois modelos de drones comercialmente disponiveis
um AR.Drone 1.0 e um AR.Drone 2.0, os calculos paralelos foram feitos em uma GPU
Nvidia com o uso de CUDA, finalmente o interfaceamento com os drones foi feito utilizando
o middleware de robdtica ROS (Robot Operating System)

Palavras-chave: Drone, SLAM, ROS, GPU.

List of Figures

Figure 1 — Amazon Dash reader 25
Figure 2 — Amazon Prime Airdrone L. 26
Figure 3 — Beam™ presence system o L. 27
Figure 4 — Nvidia TX1 o 28
Figure 5 — Proposed architecture 0. 30
Figure 6 — AR.Drone 2.0 31
Figure 7 — PTAM window 47
Figure 8 — Mapping thread, taken from (KLEIN; MURRAY, 2007) 49
Figure 9 — Tum package 53
Figure 10 — Feature detection examples for each tested algorithm. 59

Figure 11 — Frames per second versus the number of features for each algorithms. . 59

List of abbreviations and acronyms

SLAM
GPS
SIFT
SURF
BRIEF
PCA
ORB
BRISK
NN
JCBB
MHT
EKF
UKF
GPU
CUDA
ROS
IMU
OpenCV
SFM
BA
SMC
MCMC

LM

Simultaneous Location And Mapping.
Global Positioning System.

Scale Invariable Feature Transformation.
Speeded-Up Robust Features.

Binary Robust Independent Elementary Features.
Principal Component Analysis.

Oriented FAST and Rotated BRIEF.
Binary Robust Invariant Scalable Keypoints.
Nearest Neighbor.

Joint Compatibility Branch and Bound.
Multiple Hypothesis Tracker.

Extended Kalman Filter.

Unscented Kalman Filter.

Graphics Processor Unit.

Compute Unified Device Architecture.
Robotic Operational System.

Inertial Measurement Unit.

Open Computer Vision.

Structure From Motion.

Bundle Adjustment.

Sequential Monte Carlo.

Markov Chain Monte Carlo.

Levenberg-Marquardt.

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6

511
5.1.2
5.1.3
514
5141
5.1.4.2
51423
5.1.4.4

Contents

INTRODUCTION e e e e e e e e e e 17
Navigation systems 17
SLAM problem formulation 18
Feature detection 19
Data association 20
Sensor data fusiono 21
SLAM solution proposition 23
MOTIVATION e e e e e e e e e e 25
Amazon Dash and Prime Air 25
Car automation 26
Presence systems Lo 26
Jetson TX1 27
Closing Arguments 28
REQUIREMENT ANALYSIS 29
Design Requirements Lo 29
Functional Requirements 29
Non-Functional Requirements 29
Performance Requirements 30
Proposed Architecture 30
Required materialo 30
FEATURE EXTRACTION ittt in e 33
Detection and description algorithms 33
ROBOT’S PATH ESTIMATION 35
Particle Filter 36
Posterior distributionso 36
Monte Carlo Sampling 37
Sequential Importance Sampling L. 38
Structure of the FastSLAM algorithm 39
Image depth eStimation e 40
Drone odometry and state predictiono oL 41
EKF filter o e e e e e e e 42

Sampling the proposal distribution00 000 43

5.1.4.5
5.1.4.6
5.2
5.3
531
53.1.1
5.3.1.2
53.1.3
5.3.14
5.3.2
5.3.2.1
5322
5.4

6.1
6.1.1
6.1.2
6.1.3
6.2

7.1
7.2

8.1
8.2

Data association method L. L Lo 44

Resampling method and estimation of pose 44
Bundle Adjustment 45
PTAM framework 46
Tracking 46
Map projection points L L Lo L e e e e e e e 47
Patch Search e 48
Pose Updateo e e e e 48
Repetition of the patch search and pose update 48
Mapping 49
Map expansion L L Lo e 49
Bundle adjustment and data association refinement L. 50
Our choice of algorithm 50
IMPLEMENTATION @ ettt e e e 53
TUM AR.Drone ROS package 53
Scale information 53
Sensor information fusion 54
Control 56
Analysis of the TUM package 56
TEST AND RESULTS @ i ittt et e 59
Comparison between feature detection algorithms 59
FAST Benchmark 59
ANALYSIS e e e e e e e e e e e 61
Comparison between feature detection algorithms 61
PTAM at GPU tests 61
CONCLUSION e e e e e e e e e e e e e e e e 63

BIBLIOGRAPHY e 65

17

1 Introduction

Our primary intention on this project is to address the localization and mapping
problem. The state-of-the-art methods used nowadays to implement the most common
and efficient solutions will be studied, altogether with the types of algorithms used in the

solution and their possible variations.

Our main goal in this work is to apply the parallel power that GPUs can offer in
the resolution of the SLAM problem. Since 2000, Nvidia created a framework to allow
programmers that are not familiar with the graphic pipeline inside a GPU to do general
programming using its inherent parallelism. Since then, many papers were published

documenting speed-ups with the use of GPU in some problems.

The SLAM problem have a parallel structure itself, which can be seen if we
consider the landmarks detected in the environment. If some estimation process allow us
to estimate each landmark position independently from one to another, they could be
updated simultaneously. As it will be seen in the next chapters, the particle filter makes

that possible. Other ways to explore parallelism in the SLAM will be studied too.

First, in this chapter, navigation will be defined and its importance will be discussed,
then the SLAM problem definition will be explained and one example will be given. The
three modules that a typical SLAM solution have will be discussed: feature detection, data

association and data filtering.

1.1 Navigation systems

First of all, we need to define what is navigation. Navigation is the operation in
which a trajectory is traced considering a point of arrival knew a priori and the path
made to get there. The trajectory is related with the state vector of the vehicle at a given
time and the guidance with the observations made from the sensor used to capture the
trajectory. A special category of navigation that will be addressed here is the autonomous

navigation, which consists of the implementation of a navigation system that does not
depend on external control (HOFMANN-WELLENHOF; LEGAT; WIESER, 2011).

The relevance that navigation systems has in our lives is bigger than we realize.
Traveling to another city, finding a store on a map application or driving a boat or a ship,
all these tasks use navigations systems. In the 15th century the western world, represented
by some European countries (Portugal, Spain and in the 16th England and Netherlands
too), started to explore the Atlantic and Indian ocean, at the time surrounded by myths

and fantasies. All these countries had experience in navigation in the Mediterranean sea

18 Chapter 1. Introduction

or in the Northern sea, where ships could follow the coast to reach their destination.

But in the ocean there aren’t any landmarks to be followed. The navigation using
the stars, already known since the early ages became extremely important, essential
in transoceanic expeditions. An analogy between the transoceanic transport and the
autonomous robot navigation can be made: in a ocean the stars are used to orientate ship’s
movement, so some type of environmental characteristic can also be used to orientate a

robot in an unknown environment (FEDER, 1999).

For airplanes the same problem exists, to follow landmarks is very difficult or even
impossible in the cases of supersonic planes. Before the GPS advent, maps were used to
guide commercial airplanes and combat planes flew in low altitudes, therefore they were
able to use landmarks. With the GPS, which is today’s most used navigation system, the
non-autonomous navigation can be considered a solved problem in most cases, since all
aerial and aquatic vehicles and most part of the terrestrial vehicles can obtain an accurate

and precise trajectory.

But in the domain of the autonomous navigation system in closed unknown
environment a robust solution is far from being available. Today’s best candidate solution
is the family of SLAM algorithms, that maps the environment and locate the robot
independently of external agents. In theory SLAM is well defined, as it will be shown in the
next section, but its implementation is still under scientific research (DURRANT-WHYTE;
BAILEY, 2006).

1.2 SLAM problem formulation

Due to computational limitations of embedded systems and to noises that can arise
in sensor readings, a stable and affordable SLAM solution has not been found yet. Noise
can be caused, for example, by cheap sensors or environmental influence. If the sensor
information is used without any treatment to compensate these errors, the dead reckoning
operation, i.e., to calculate the robot’s position using a previously determined position
and an estimated speed information over an elapsed time, will accumulate a significant
amount of imprecision. Normally this situation happens with a robot that uses only an

odometer to retrieve information about its position.

To diminish these errors one option is to use another type of observation, one that
tries to match the position of previously recorded characteristics of the environment with
current observations. This is how SLAM (Simultaneous Location and Mapping) determines
the target position, and as a consequence creates a map of the environment, that is, the
location of all know environment characteristics (DURRANT-WHYTE; BAILEY, 2006).
Together with this structure the probabilistic theory can be used to determine the position

and orientation of the robot and of all the environment characteristics, that are usually

1.8. Feature detection 19

called landmarks.

Originally three main directions of the SLAM implementation can be identified:
topological, grid-based and feature-based approaches. In the first the world is modeled
simply by graphs and nodes, and to detect the location of the robot is necessary to
recognize that the robot is in a determined node. This is the method more indicated for
large environments, but it suffers from a clear drawback: the environment recognition is

rather difficult to be made (JENSFELT; CHRISTENSEN; ZUNINO, 2002).

The grid-based approach consists in the construction of a multidimensional field
that maintains stochastic estimates of the occupancy state of each cell (ELFES, 1989).
But the inherent problem with this approach is that it is computationally expensive and

memory consuming.

Feature-based methods are definitely the most used ones today, because they are
less computationally expensive than grid-based and the placement recognition is easier
than its topological approach counterpart. More about this approach will be discussed
further ahead.

One usual problem that stem from the use of SLAM is high computational usage.
Many types of solutions have been proposed over the years to try to diminish this problem.
Two types of techniques are: optimal techniques, aiming the reduction of the required
computation maintaining the quality of the estimation; and conservative ones that tries
to maintain the quality of the estimation while reducing the computational demands

(BAILEY; DURRANT-WHYTE, 2006).

1.3 Feature detection

To facilitate the comparison between frames one can decompose the image in
keypoints. The ideal keypoints detector identify singularities in the frame in such a
way that the same result is obtained repeatably, even with a change of the viewpoint
(LEUTENEGGER; CHLI; SIEGWART, 2011). A degree of invariance to rotation and
scale transformation, affine transformation, noise and luminosity is also desired (ALAHI;
ORTIZ; VANDERGHEYNST, 2012). A keypoint detector with all these characteristics

does not exist, the available ones adopt a compromise between these characteristics.

To represent these keypoints detectors two types of descriptors can be used, a
binary descriptor or a histogram descriptor (ALAHI; ORTI1Z; VANDERGHEYNST, 2012).
The combination between the image keypoints and descriptor makes it possible to compare
images and subtract the features necessary for the SLAM update. The choice of which
image keypoint detector to use is necessary in SLAM because the robot that uses it

sometimes does not have the same requirements. For example, for a terrestrial vehicles

20 Chapter 1. Introduction

rotation of the image is not an important constraint, but for an aerial vehicle it is.

There are many types of image keyframe detector, most prominent ones will
be walked through here. Certainly the most popular is SIFT (Scale Invariable Feature
Transformation), which is invariant to scale and rotation transformation and robust to
luminosity change (LOWE, 2004). Unfortunately, it is too computationally expensive to
be executed in real time. Inspired in this algorithm a simplification was made, creating

the most used image keypoint descriptor.

The SURF (Speeded-Up Robust Features) is definitely the most used, because
it performs similarly to SIF'T but it can be implemented for real time execution. This
detector focuses in maintaining scale and rotation invariance, moreover, it also shows
some resistance to skew, anisotropic and perspective distortion (BAY et al., 2008), despite

having a higher sensibility to luminosity changes than SIFT.

Another important image decomposition algorithm is BRIEF (Binary Robust In-
dependent Elementary Features). The high dimensionality of SIFT does not allow real
time execution. One option to solve this problem is dimensional-elimination methods, for
instance PCA (Principal component analysis), to decrease the dimension of the descriptor.
However, it is possible to eliminate the dimensionally reduction step by creating a short
binary descriptor, exactly the idea behind BRIEF (CALONDER et al., 2010). It also
serves as basis for two others algorithms, ORB (Oriented FAST and Rotated BRIEF)
(MUR-ARTAL RAUL; TARDOS, 2015) and BRISK (Binary Robust Invariant Scalable
Keypoints) (LEUTENEGGER; CHLI; SIEGWART, 2011).

Another feature extraction algorithm that is worth mentioning is the FAST (Fea-
tures from Accelerated Segment Test), used to detect corners in images. The biggest
advantage of this feature detection method is its performance, since it is much lighter than
SURF, for example (ROSTEN; DRUMMOND, 2006). This method is used in the PTAM
framework (KLEIN; MURRAY, 2007), which today is probably the most successful SLAM

solution.

1.4 Data association

Data association consists simply in relating feature readings given by one or
more sensors with the elements already present on the map, therefore this operation is
responsible for the update of the environment information kept in the map. The complexity
is exponential considering the number of sensor measurements, and the solution space for
the right association between measurements and features growth with the clutter of the
environment and the imprecision of the sensor (NEIRA; TARDOS, 2001).

The inherent problem with SLAM is the fact that the information given by the

1.5. Sensor data fusion 21

sensors normally is a nonlinear function of the relative difference between the position of
the sensor/robot and the position of the feature, thus this combination of unknowns needs
a joint estimation scheme (DAVEY, 2007). The data association algorithm is normally
divided in two steps: a test to determine the coherence between the observation and the
feature given an estimation of the vehicle position; and a selection criteria to choose the

best possible match.

The simplest method to associate observations is the gated nearest neighbor. The
squared innovation test is used to determine which hypothesis are coherent and the set
with the smallest Mahalanobis distance is chosen. The complexity of this algorithm is linear
considering the number of features and observations, but it is too permissive, therefore, it

allows matches between landmarks and spurious points sometimes.

The JCBB (Joint Compatibility Branch and Search) traverses the information tree,
which is the representation of the solution space for the data association, searching the
solution with the smallest number of null jointly compatible pairing. The method has a
very restrictive criteria, preventing the solution space explosion due to the growth of the

robot position error. The most immediate problem presented in its implementation its
quadratic complexity (NEIRA; TARDOS, 2001).

Another data association method that has as objective to reduce the number
of mismatches is the Multiple Hypothesis Tracker. It applies the idea of expectation-
maximization algorithm to multi-target data association with linear complexity in the
number of targets (DAVEY, 2007). Simply put, it considers multiple hypotheses of data

association through time, conserving the ones that are most likely to be true.

The nearest neighbor and the JCBB are more commonly used when the vision
sensor is a sonar or a radar. In the case of cameras, many SLAM applications uses a region
of pixels around the interest point to execute data association. This approach is fairly

common with the use of Structure from Motion algorithms to implement the SLAM.

1.5 Sensor data fusion

In an ideal world the odometry data would suffice to determine robot’s localization,
but fused with this measure there is an inherent noise, that produces an error in the
robot’s position every time the observation of the odometer is used to update its position.
To correct this error propagation, one idea is to use another type of observation, one
that tries to match the position of actual landmarks with the old positions. This how
SLAM (Simultaneous Location and Mapping) determines the target position, and as
a consequence creates a map of the environment considering the landmarks locations

(DURRANT-WHYTE; BAILEY, 2006).

22 Chapter 1. Introduction

However, the landmarks measurements also have noise, so a filter is commonly used
to cope with the odometer and other sensors errors. Some different SLAM implementations
use different types of filters. The most common filter is the EKF (Extended Kalman
Filter), a filter based on the Hidden Markov Model that uses the first order Taylor series
to linearize nonlinear observations functions. But it considers that the observation and the
state prediction have a Gaussian distribution. On the linear case this filter has an optimal
solution but in the nonlinear case the approximation can produce significant errors (WAN;
MERWE, 2001).

One alternative of this type of filter is the Unscented Kalman Filter (UKF). It uses
a deterministic sampling approach to represent the Gaussian random variable, and it can
determine posterior mean and covariance accurately to the third order in the Taylor series
without any additional computational effort than that expended by the EKF. It solves the
two principal drawbacks of the EKF: nonlinear approximation and the derivation of the
Jacobian (JULIER; UHLMANN, 1997).

Nowadays, particle filters can be applied to obtain a more general solution, since it
is non-Gaussian and non-linear, using Monte Carlo based methods. Instead of represent
the density function by itself, a set of points chosen randomly from the distribution is used
(DELLAERT et al., 1999), just like intuitively one filter using Monte Carlo method should
work. It is also simpler to implement and in strong nonlinear situation more suitable
than Kalman-based filters. Every type of filter considers different hypothesis and demand
different quantities of computational processing, and the implementation of the SLAM

solution is linked directly with the type of the filter.

Filtering implements the concept of localization proposed by probabilistic robotics.
The idea is to represent the uncertainty of the robot’s position by a probabilistic distribution,
not trying to calculate a discrete position point (THRUN; BURGARD; FOX, 2005). Using
the probabilistic approach to determine the robot’s position also makes easier to apply

the sensor uncertainty in the position calculation.

The concept described above gives the solution the propriety to deal with uncertain
information. Two characteristics that also are desirable is the capacity to deal with
ambiguities and the possibility to integrate sensor readings from different types of sensors
(BURGARD et al., 1996). The filter makes it possible to use sensor readings disregarding

the source of the information.

Filtering is normally the usual option for the robot’s position estimation. But
another approach, more popular in the augmented reality community, can also be applied
to our problem. This method is known as bundle adjustment and consists of using
batch optimization to solve the position problem. The SLAM problem is the real-time
case of the Structure from Motion problem, which represents the problem of estimate

3D structures from 2D image sequences. Moreover, bundle adjustment also sparsifies

1.6. SLAM solution proposition 23

the problem differently, defining keyframes of the environment instead of propagating
probabilities through the map (STRASDAT; MONTIEL; DAVISON, 2012).

1.6 SLAM solution proposition

In our project we will study the implementation of the SLAM for a aerial vehicle,
more specifically the AR.Drone. Our main goal is to use the GPU to implement most
algorithms that can be executed using parallelism. This can solve the high demand of
the feature detection algorithm and the data association process. All these algorithms
will be constructed over the implementation of the SLAM solution proposed by (ENGEL;
STURM; CREMERS, 2014). Our objective is to implement the feature detection and the
data association algorithms and use the communication and drone’s control previously

implemented.

25

2 Motivation

The SLAM problem is very popular in the scientific community and the reason is
very simple: it has commercial applications in many economic sectors. In the following

sections three examples of possible applications will be shown.

2.1 Amazon Dash and Prime Air

The Amazon Dash is an optical reader for bar codes. The idea behind it is to use
it to scan products that need to be bought, and all the registered barcodes are sent to
Amazon Fresh for purchase and delivery. This product is still in test phase, so all the
owners were previously invited to test it (AMAZON, 2015a). This technology does not
apply in the SLAM solution, but the Prime Air program implements the SLAM solution

in an entire autonomous solution to sell and deliver products.

Figure 1 — Amazon Dash reader

The objective of the Prime Air program is use drones to deliver products to
costumers hours after the selling (AMAZON, 2015b). In that context the SLAM solution
can be used to generate a map for a city and record the route between an amazon deposit
and the costumer’s hour or a delivery point. Every time that a delivery needs to be done
the same route can be used for the drone, without the use of GPS. And with the map
generated by all the available drones new routes can be generated off-line, or pieces of

existing routes can be used to generate new ones.

As we will see in this project SLAM is too computationally expensive to be executed
in a low-cost embedded processor, but recent advancements in GPU embedded hardware
can bring a change to this situation. We propose to implement part of the treatment in
the graphics unit comes from the possibility that in a near future embedded GPU will be

able to execute the parallelized part of the code with low energy consumption and in real

26 Chapter 2. Motivation

Figure 2 — Amazon Prime Air drone

- amazon
~—PrimeAir "

time. An example of this is the Nvidia Tegra X1, which is already been using in advanced
driver assistance (ADAS), computer vision and deep learning (NVIDIA, 2015).

2.2 Car automation

Autonomous cars have always been pictured like a feature from the future in movies.
In reality, autonomous navigation systems for terrestrial vehicles are been researched for
more than a decade. With the increasing automation in cars it will be possible to create
instruments to prevent accidents and optimize the use of cities roads and highways. This

technology can cause a revolution in logistics and transportation systems and security.

In this context the SLAM solution would be applied for example to generate paths
that are used frequently, e.g., the daily commute path, or the path to a supermarket. This
solution could be implemented completely inside the car, without the need for network
connection. Actually the solution proposed by (MUR-ARTAL RAUL; TARDOS, 2015)
seems very robust given its results with KITTI and TUM RGB-D benchmarks.

The solution proposed by the ORB-SLAM team (MUR-ARTAL RAUL; TARDOS,
2015) dos not use GPU acceleration, so it can even be improved. There are some details
that need to be worked before a real implementation, for example, if a map created a
priori is used some mechanism to update the map considering changes in the environment
must be present, with a way to propagate updates to all other users. But even with
pending modifications SLAM is an excellent candidate to integrate the navigation system

of future’s cars.

2.3 Presence systems

The use of presence systems is growing every day thanks to the globalization of the

production chain. The idea is to provide a tool to communicate with people in meetings

2.4. Jetson TX1 27

and in work situation in real-time, in the most natural way possible and with high image
quality together with the capacity of moving depending only on the user. One example of

this type of product is the Beam™ produced by Suitable Technologies.

Figure 3 — Beam™ presence system

A SLAM-based solution can be used in this situation to navigate the system from
one point to another independent of the user, like for example from an office to a meeting
room. This can save a significant amount of time for the user, who can dedicate its time
and attention entirely to the communication with the surrounding people, that is the main

reason of this product creation.

The Beam™ already have a wide-angle high-resolution camera, but does not have
enough processing power to implement the SLAM solution at this moment. And another
question is: if the GPU is used to accelerate the implementation its energy footprint must
be small, because the system has to use the battery to be able to stream the video and to
power the locomotion system, but even so it is a real world solution that can benefit from

the implementation of an autonomous navigation system.

2.4 Jetson TX1

The Jetson TX1 is an embedded GPU system recently launched by Nvidia that
illustrates the portability of GPU processing power. It has 256 CUDA processing cores and

delivers over 1 TeraFlops of performance. Nvidia also provided a developer kit specially

28 Chapter 2. Motivation

for this chip. The processing power of this chip is enough to solve many problems of deep

learning, computer vision and GPU computing.

The size of this chip is the same of a credit card (Fig. 4), and considering the
performance delivered by it, many parallel problems can take advantage of its structure to

increase their performance.

Figure 4 — Nvidia TX1

2.5 Closing Arguments

Considering the examples given the SLAM solution can be object of direct imple-
mentation in many economic sectors. We do not even consider indirect implementation,
i.e., problems that can use parts of the SLAM solution to solve other ones, for instance,
the tracking of objects. Normally a CAD model is used to detect and track an object,
but with the development of SLAM solutions some discovery or breakthrough can be
used to increase the robustness or to decrease the computational requirements, or to
detect the object without needing a CAD model. Therefore, the implementation of SLAM
solutions is important for many research areas and its study is very actual economically

and scientifically.

29

3 Requirement analysis

To better understand all the requirements of the project and the necessary algo-
rithms and tools that will be used to achieve them, this section will describe then and the
expected results. Moreover, a simple system architecture showing communications and

requires materials is unveiled.

3.1 Design Requirements

e The AR.Drone used wasn’t designed to carry heavy payloads, therefore, a crucial
requirement is that no further sensors can be used, hence, only the ones already
embedded with it can be used. They are : IMU, ultrasound sensor, wide-angle camera

and high-speed camera;

o As we will be using CUDA, ROS and possibly OpenCV, most of the project will be
write either in C4++ or Python;

« For feature point extraction GPU based algorithms should be used in detriment of
CPU based ones;

3.2 Functional Requirements

» Receive video feed from the cameras;
e Map an unknown region while flying (considering static landmarks);
o Perform localization in an unmapped region;

« Send controls to the drone, considering that an off-board approach is adopted in this

project;

o Detect feature points using images from the camera, making possible to match new

frames with old ones.

3.3 Non-Functional Requirements

o Use parallel algorithms where possible.

o Implement all the parallel algorithms preventing problems like race conditions or
starvation in the GPU.

30 Chapter 3. Requirement analysis

3.4 Performance Requirements

o The system must function as close as possible to real-time;

o The system should work at map of size [d? meters, where Id is the distance covered

by the drone while flying in a straight line using only one battery charge;

3.5 Proposed Architecture

A simple schematic of the major pieces and communications in our system is shown
in Fig. (5). Basically, the AR.Drone will send its measurements and video feeds to a
computer through wireless network, the computer by its turn will send control signals to
the drone and fulfill the remainder of the requirements by doing itself the computations or
delegating to a CUDA GPU when suitable.

~—
I}

EANVIDIA
CUDA.

Figure 5 — Proposed architecture

3.6 Required material

Given the proposed architecture the following hardware are necessary for the

development and deployment of the project:

e An AR.Drone 1.0 or 2.0;
o A network that allows wireless communications;

o A computer with CUDA enabled Nvidia GPU.

3.6. Required material

31

Figure 6 — AR.Drone 2.0

33

4 Feature extraction

Concerning the feature detection and image description, There are dozens of
algorithms that can be used to extract interest points (given a criterion) and to describe an
image. As discussed in Section 1.3 and in (LOWE, 1999), a good feature detector should
be invariant to some degree to illumination, 3D projective transformation and any type of
object variation. But at the same time it should have the capacity to detect distinctive

object’s characteristics.

In a feature detection algorithm two operations dominates: keypoint localization and
feature description. Keypoint localization is the identification of distinctive characteristics
in a image. In this part the keypoints, that should be detected under different conditions,
are localized. To allow scale invariance in detection, normally, feature extraction is made
using the same image at different scales. Finally, an affine region detector is added to give
the invariance to multiple viewpoints (GRAUMAN; LEIBE, 2010).

The second step in a feature detection algorithm is the feature description. They
can be divided in two subgroups, considering how the features descriptors are constructed:
detectors based in histogram descriptors and based in binary descriptors. The former one
describes the characteristics of adjacent points (BEHLEY; STEINHAGE; CREMERS, 2012)
and the latter uses a binary vector to represent the keypoint appearance (CALONDER et
al., 2010).

4.1 Detection and description algorithms

The two most popular algorithms are SIFT and SURF. The first one uses a
difference of Gaussians detector with a histogram descriptor, but its complexity does not
allow real-time execution. To solve this problem SURF was developed as an approximation
to allow real-time execution (BAY et al., 2008).

Another popular feature extraction algorithm is ORB. This method was created as
another replacement for SIFT, aiming real-time execution, similar matching performance
and variance caused by image noise (MUR-ARTAL RAUL; TARDOS, 2015). This algorithm
uses the FAST detector (ROSTEN; DRUMMOND, 2006) and the BRIEF descriptor
(CALONDER et al., 2010) to extract features. But this algorithm is less resistant to scale
and rotation invariance than SURF or SIFT.

Many others algorithms exists, for instance, BRIEF, BREAK, KAZE, etc. We
will remain discussing only the SURF and ORB because we want a real-time execution
and both algorithms have GPU implementation in the OpenCV library. Using the ROS

34 Chapter 4. Feature extraction

interface with the AR.Drone some tests with both algorithms were made to decide which

one we should use in our program.

The FAST feature detector is a method develop to extract keypoints, like all other
ones, but it was conceived to be less computational demanding than the other algorithms.
Around a candidate point, some pixels are compared to the intensity of this point and a
threshold predefined; if there is a certain number of points outside the interval [I, — t], I,
being the intensity of the candidate point and ¢ the threshold value, then this candidate is
declared a corner, or a keypoint (ROSTEN; DRUMMOND, 2006).

This algorithm have some weakness too, for example it detects multiple features
adjacent to other previously detected. This problem is solved by a non-maximum suppres-
sion, that suppresses all the point with exception of only the maximum one considering
a arbitrary metric in a local region (NEUBECK; GOOL, 2006). The FAST is used for

feature extraction inside the PTAM framework.

35

5 Robot's path estimation

SLAM can be perceived as a particularization of the SfM (Structure From Mo-
tion) problem, which refers to extracting 3D representations using 2D image sequences
(AZARBAYEJANI; PENTLAND, 1995). But SLAM has one very important constraint:
real-time execution. That demands an almost completely new solution approach, since StM
is generally solved offline using batch optimization (STRASDAT; MONTIEL; DAVISON,
2012).

All the identifiable features in the images are, by hypothesis, related to some 3D
entity in the space, captured in consecutive video frames. With the rigidity assumption it
can be asserted that the feature motion is due purely to the camera, solving the camera
and the feature localization problem. Both locations can be further refined with new
images and new features. Bundle adjustment is defined by the constant update of the
positions due to new measurements (DAVISON, 2003).

In the most popular form of bundle adjustment, the keyframe BA, only part of
the past data is maintained, therefore most of it iss simply discarded. The keyframes are
defined automatically or heuristically and must represent the features in the environment.
In the filtering approach only the features are retained, which causes the map to be heavily
connected, since after every new frame new connections between features are created. As
one can deduce, the computational cost of propagating the joint distributions scales poorly

in comparison with the number of features observed.

STRASDAT; MONTIEL; DAVISON state that bundle adjustment is more efficient
than the filtering approach considering the complexity cost and its better precision. But,
as JULIER; UHLMANN shows inconsistencies can be produced if the EKF filter is used,
due to the linearisation of the process and observation model. Therefore, the comparison

between the bundle adjustment and a filtering technique should use another filter.

Another possible approach for the SLAM algorithm implementation is the use
of filtering methods (STRASDAT; MONTIEL; DAVISON, 2012). This domain is more
applied to sonar and radar sensors, but some applications for cameras also exist. Since
filtering considers the correlation between landmarks and observation the tracking and

mapping is not separable, so a complete iteration must comply with real-time restrictions.

As the probabilistic method were developed for robotic use, odometry information
is always available, that used in data association helps to avoid wrong matches. Without
it, data association needs to use complex methods, like covariance-driven gating, joint
compatibility branch and bound (JCBB) or RANSAC (RANdom SAmple Consensus),
which are very computational demanding (KLEIN; MURRAY, 2007).

36 Chapter 5. Robot’s path estimation

In next sections FastSLAM and PTAM will be discussed.The former is the imple-
mentation of the particle filter using a Rao-Blackwellized marginalization and the latter
uses bundle adjustment for SLAM due to its performance and precision (STRASDAT;
MONTIEL; DAVISON, 2012).

5.1 Particle Filter

Since its creation the particle filter has become a popular method to search for
the solution of optimal estimation problems in non-linear and non-Gaussian situations
(DOUCET; JOHANSEN, 2009). In contrast with the Extended Kalman Filter, which
applies a linearisation step, it does not simplify in any means the function estimated,
converging to a result that the EKF does not or getting a better estimation. Of course,

this comes with a cost: the computational cost is bigger than the EKF’s.

Our goal is to achieve the estimation of an unknown quantity using observations.
Normally one have already some information about the system, thus the estimation
becomes simple applying Bayes theorem. But if one wants to run the inference sequentially
and on-line some sort of update mechanism is necessary. Analytical answers for these
models are rare. For example, if the system is modeled as a linear Gaussian state-space
the Kalman Filter is the optimal estimator, or if it is modeled as partially observed and
finite-state Markov Chain the HMM (Hidden Markov Model) filter is the optimal estimator
(SMITH et al., 2013).

For the non-linear and non-Gaussian cases the EKF and the Sequential Monte

Carlo (SMC) methods are alternatives for the estimation.

5.1.1 Posterior distributions

The main goal of the SMC is to estimate the posterior distribution p(x.|yo.:) and

the following expectation for some function f; : y“+1) — R™:

I(ft) = Ep(x0:t|y1;t)[ft(x0:t)] = /ft($0:tp(x0:t|y1:t)dx0:t (51)

The joint distribution p(xo.|y1.:) can be calculated as follows:

p(y1:t+1 |$o:t+1)p($t+1 |$t)
p(yl:t+1 |y0:t)

p(IO:t—1|y1;t71) = p(xO:t’ylzt) : (52)

A recursive relation that is used to calculate the marginal distribution p(z;|y;.) is

the following:

5.1. Particle Filter 37

P(Te1|y1e) = /p($t+1|$t)p($t|y1:t)dwt (5.3)

p(yt+1 |$t+1)p($t+1 |?/1:t)
(yt+1 |It+1)p($t+1|y1;t)d$t+1

P(Te1|Yrer) = T (5.4)

As one can observe, all the integrals in the equations (5.1), (5.2), (5.3) and (5.4)
have a high dimensional order. Equations (5.3) and (5.4) are know as the Bayesian filter,
the first equation being the prediction step and the second the update step. In our case,
the state variable x; will have the robot pose and all the features poses, therefore any

attempt to calculate these integrals are not feasible.

5.1.2 Monte Carlo Sampling

Consider N independent and identically distributed (now on represented by the

abbreviation i.i.d.) random samples x&& =1,..., N from the conditional distribution

p(zo:¢|y1.¢). This distribution can be estimated using the equation:

1
PN(dm&t’yO:t) = N Z 57@(“ (ﬂfo:t) (5-5)

0:t
=1

Using the equation (5.4) with (5.23) we have the following unbiased estimator:

1450 = [flav) Ptz = 37 3 £ (+8) (5.6)

And considering the Law of Large Numbers, shown in equation (5.7), one can say

that I(f;) approaches the real expectation value E(f;) when the number of samples grows.
1 N
]}ggoﬁl;g()@) =E(g) (5.7)

As for the variance, if the (5.8) holds, then the Central Limit Theorem, (5.9) is

valid.

0]2% - Ep(xo:tlyu)[ff(x&t)] — I*(f;) < +o0 (5.8)

VN[In(f:) = I(f)] —n—o0 N(0,0%,) (5.9)

However, there is an inherent problem with this method: the samples must be from
the conditional distribution that one expect to estimate, and in our case, p(zo.|y1.¢). But

since this method convergence does not depend upon the dimensionality of the integral

38 Chapter 5. Robot’s path estimation

estimated it is a good idea to adapt it to our needs. The Sequential Importance Sampling
(SIS) is the modified version of the Monte Carlo sampling that generalizes the MC method
for recursive use. The Markov Chain Monte Carlo (MCMC) methods are not considered
here as candidate since they are not efficient when used in recursive problems (DOUCET
et al., 2000).

5.1.3 Sequential Importance Sampling

The idea of the importance sampling is to draw samples from a proposal distribution
and re-weight the integral to target the correct distribution. This proposal distribution
is called m(zo.|y1.¢). As the number of samples becomes larger, it approaches the aimed
distribution (ARULAMPALAM et al., 2002). Therefore, the equation (5.6) is transformed
into (5.10):

fft(IOt) (xo:t)W(JfO:tlyl:t)de:t
S w(@o:e) (@0t |y1:e) dos

I(fi) = (5.10)

If we compare both equation one may think that they are not equal, but the
denominator in (5.10) shows in (5.5) term +. The weight used to compensate the samples
is defined by the equation (5.11):

P(@o:|y1:t) (5.11)

w(woy) = 7(To.t|y1:t)

Applying the importance sampling to the Monte Carlo estimation we have:

: N 4 .
o= DT S) 5.2
Where the term u~)§i) represent the normalized weight:

ol = M (5.13)

From the comparison between the equation (5.12) and (5.6) one can say that the

weight operation is a sampling method defined by the following expression:

=z

Py (dzo|yry) = Z (l) dmOt) (5.14)

To update the weight sequentially the (5.13) needs to be changed. Using the law of
total probability, equation (5.15), one gets the expression (5.16):

5.1. Particle Filter 39

T(zot|yre) = w(wo) - W 7 (r]Tom—1, Y11) (5.15)
T(Tot|y1) = T(@e|Tow—1, Y1:6)T(Tot—1|Y1:0-1) (5.16)

Deducing the new weight equation, we have:

L _ Pl \xi”) (21" |2")p <x§f i) .p(ytix% R
t = i — W1
(2)|$0t 1 Y1) (x)t Y1) (2)|$0t 1> Y1)

(5.17)

The choice of the importance sampling distribution interferes in the convergence of
the filter, and it is left for the user. Many types of adaptations can and should be done
in the SIS method for a valid and efficient implementation, e.g., adding a re-sampling
mechanism and treating the degeneracy problem. But explaining just the idea behind the

SIS is enough to introduce the particle filter.

5.1.4 Structure of the FastSLAM algorithm

The particle filter has one distinct drawback: the sampling of high dimensional
spaces can be inefficient. But with some models it is possible to use the inherent character-
istics to simplify the sampling. This is the definition of the Rao-Blackwellised particle filter
(DOUCET et al., 2000). Since the FastSLAM uses the EKF to do this marginalization, it
is a type of RBPF (Rao-Blackwellised Particle Filter).

The sequence of operations in the FastSLAM algorithm can be resumed into the

following list:

1. Get new sensor measurements.

2. Reconstruct features points using the received image.

3. Sample a new robot position.

4. Associate the features in the image with the existing landmarks.
5. Update landmarks position.

6. Calculate the particle’s weight.

7. Resample particles.

The FastSLAM can be used with cameras, radars, sonars or any type of sensor.

Since our sensor of choice is the monocular camera, the algorithm will be presented with

40 Chapter 5. Robot’s path estimation

the necessary adaptations, notably with some changes in comparison with the FastSLAM
structure presented in (THRUN; BURGARD; FOX, 2005). A reconstruction step to
estimate the feature’s depth using the actual frame and the old one is necessary in this

case.

Another change is the data association method, when we suggest the NN (Nearest
Neighbor), while the reference uses the likelihood maximization. Lastly, our feature
initialization is also different from the method proposed in the book. In the next sections

the steps can be seen with more details.

5.1.4.1 Image depth estimation

The depth estimation can use a simple reconstruction algorithm based on least
squares, implemented inside the OpenCV function triangulatePoints. But before the

reconstruction the feature extraction and matching must be done.

The first step of the estimation is the extraction of the images features, which can
be done using the SURF algorithm, for example. However, in the case that a heavy feature
detector algorithm is used it is advisable to search for its implementation in GPU (SURF
and GPU have implementation in GPU inside the OpenCV library).

Then, the descriptors of the detected keypoints are matched with the keypoints
descriptors from the precedent frame. For the matching we used the brute force matcher,
also from OpenCV and implemented in GPU. It returns the vector with the best matches

considering given descriptors. Distance is measured in Euclidian space.

Then, with the keypoints from the new image and the old one the reconstruction
can be done. The first frame detected by the drone is considered the initial frame, and all
the others are calculated multiplying the actual extrinsic camera projection matrix by the
rotation and translation matrix, with parameters obtained with the estimation made by

the particle filter.

The equations (5.19) and (5.20) represent the initial extrinsic camera matrix
and the equations (5.21) and (5.22) represent the update made at each iteration of the
reconstruction. The matrix inside (5.21) is the rotation matrix for Tait-Bryan angles with
the notation Z;Y5X3. Rotation matrix and translation matrix are used, together with
the intrinsic matrix, obtained from the camera calibration procedure, to calculate the

projection matrix (5.18) at each iteration.

P =1-[R|t] (5.18)

5.1. Particle Filter 41
1 00
Ry=10 1 0 (5.19)
0 01
0
To = |0 (5.20)
0
ety cpstysgy — chpsihy sPpsdy + cpregyso,
Ry = Ri1- |cOsihy ey + shysOispy chysipysty — cabysdy (5.21)
—s0, cOispy chicy
Tt
T, = |y, (5.22)
Zt

The equation (5.23) shows one form of the system that is solved for two image

points (ug,v1) and (ug,vy) using their respective camera matrices, where m; and my

represent the elements of each matrix.

1 1
1 1
2 2

2 2
T'31U2 — My

1 1
1 1
2 2

2 2
T'3oU2 — Mgy

1 1
1 1
2 2

2 2
T'33V2 — Moy

5.1.4.2 Drone odometry and state prediction

X mh - 7%3“1

m§4 - 7“?1>3U1
Y| = (5.23)
A

2 2
My — T332

2 2
Mgy — T3302

Using ROS we can get all te sensors measurements directly from the drone using
wi-fi. The package used for this task is the ardrone_autonomy vi1.4.1 (SFU, 2015), getting

the image from the frontal camera, the linear acceleration and the angular velocity. For

42 Chapter 5. Robot’s path estimation

the odometry, the equation (5.24) can represent the state of the drone.

7 100¢t 0000 0 [z 20 0000

" 0100¢ 000 0 |y 02 000 0 .-

2 00100¢ 000 |z, 00 200 o |

4 00010000 0| |z t 00000 |”

% |=1000010000-|ys|+|0 ¢t 0000 g (5.24)
2 000001000 |z, 00 ¢t 000 9,:

D, 000000T1O0 0 [®, 00 0 ¢t 00 qkt

o, 000000GO0 10| [6. 0 0 00 ¢o L4
(| (100 ¢ 00001 [Ty |00 000 ¢

Concerning the estimation of the feature’s position, the relation expressed by (5.25)
can be used. The deltas in these equations represent the displacement of the drone during

iterations.

Mot Hzt—1 + Al't
Z2=| Hys | = |Hap—1 + Ay, (5.25)
Uzt fo -1 + Az

5.1.4.3 EKEF filter

Each feature position (z,y, z) will be approximated by a Gaussian in the FastSLAM,
therefore an EKF filter will be used for each one of the detected features. Here we have
one important simplification considering the initialization of a brand-new feature: the
initialization of the estimation parameters (mean and covariance) is made using the position

reconstructed by two images.

According to (EADE, 2009), the distribution of landmark’s positions is poorly
estimated by Euclidean coordinates. Thus, we have the need to refine the estimation of
the depth, made by the reconstruction of the two consecutive images, allowing a better

representation of the feature.

One possible approach is presented by (DAVISON et al., 2007), the creation of a
one dimension particle filter with particles scattered on the ray connecting the particle
and the camera. When this estimate becomes acceptable (small covariance matrix) the

feature, with the depth estimated, is added to the map.

But this approach is too heavy to be implemented in real-time. Then (EADE;
DRUMMOND, 2006) and many others papers use the inverse depth, which can be

estimated used the EKF since it is linear under certain conditions. Specially in (EADE;

5.1. Particle Filter 43

DRUMMOND, 2006), the inverse depth in the frame of first observation of the feature is

estimated.

Equation (5.26) represents the euclidean estimation given by the image reconstruc-
tion. The inverse depth is defined by (5.27). This notation is introduced in (MONTIEL;
CIVERA; DAVISON, 2006).

=@ y 2) (5.26)
T 1*
Linvdepth — (Z g Z) = (U v q>t (527)

5.1.4.4 Sampling the proposal distribution

The proposal distribution used in the FastSLAM 2.0 is improved considering
the FastSLAM 1.0 taking into account the measure z; in the sampling of the posterior.
The equation (5.28) represents the posterior in the integral form. This equation can be

approximated by a Gaussian with the parameters given by (5.29), (5.30) and (5.31).

N (k] (k]
~N (zt;9(mey 1), Re) N(mct’uct’t_l’zct’t_l)

k ——— k
p(xtlx[lzlflaul:ta Z1:t,01:t) = 77[k] / p(Zt|mcw$t, Ct) p(mCt|I[1:]tfl7Z1:t—1’ Cl:t—l) dmct

(5.28)
~N (e} ue), Re)
p(xt‘xl[fk—]l? Uy)
Q¥ =R +G,x¥,_cr (5.29)
s = [GIo G+ B (5.30)
pl = SHGTQI (2 — 2 + 2/ (5.31)

To generate the normal distribution with the parameters expressed by the equations
(5.30) and (5.31) the polar form of the Box-Muller sampler can be used. It is faster and
more robust numerically in comparison with the basic form. The equations (5.32), (5.33),
(5.34) shows how a normal random can be generated, with u and v being random uniform

number in the interval [—1, 1].

w = u?+v? (5.32)
—21
2 = - 1| —2(w) (5.33)
w
21 =" M (534)

44 Chapter 5. Robot’s path estimation

Then, with zy and 2z; we can sample the posterior distribution using the parameters
defined in (5.30) and (5.31).

5.1.4.5 Data association method

The data association method proposed here is the nearest neighbor. This method
calculates the Malahanobis distance between one landmark and each detected feature and
compares this distance with the chi-squared estimate, considering the degree of freedom
of the problem and the confidence interval chosen. The equation (5.35) shows how this

distance is calculated, with the variable); ; given by (5.29).

Dy = v Qi < Xia (5.35)

t,g

Normally this method is divided in two steps: first the distance calculated is
validated considering the chi-squared parameter with a certain level of confidence. This
is the test step. The next one is the selection criterion, which in our case is the smallest

distance calculated, D?;.

NEIRA; TARDOS and MONTEMERLO; THRUN tell us that this method can
cause divergence in the EKF case, due to errors in data association. Moreover, when the
environment is noisy usually we have more than one feature close to a landmark, which

can introduce errors.

A more suitable method is the JCBB (Joint Compatibility Branch and Bound),
since it explores the joint compatibility that exists during the observation of a batch of
features, or in our case, an image. Then this algorithm searches in the interpretation tree
(a tree with all the combinations of associations) the combination of association between
features and landmarks that are most likely to be true, but as one can assume demands a

high computational capacity.

5.1.46 Resampling method and estimation of pose

Particle sampling is carried after one complete iteration of the particle filter. The
most popular method is the stratified resampling: particles are divided in intervals and

sampled from them based on the cumulative weight.

The sampling allows us to filter the particle set searching for particles that are close
to reality (THRUN; BURGARD; FOX, 2005). But one must watch for the dominance
inside this sampling, a particle cannot occupy the entire set, as diversity is important for

the precision of the filter.

Following this step we need to estimate the position of landmarks and the robot

using all the particles. This is done using the weights in a weighted mean with all the

5.2. Bundle Adjustment 45

positions of landmarks and the estimates of the robot’s path in each particle.

5.2 Bundle Adjustment

Simply put, bundle adjustment is a large sparse geometric estimation problem and
normally they are formulated as non-linear least-square problems (TRIGGS et al., 2000).
Its main goal is to minimize the reprojection error between the observed and predicted
points (LOURAKIS; ARGYROS et al., 2005).

Bundle adjustment was born in the context of visual reconstruction, when one tries
to extract a 3D model from a set of images. In the 3D model construction the camera
position can be recovered, therefore the position of the robot can be determined using this
information (TRIGGS et al., 2000).

The problem faced by this method is tackled from the reconstruction perspective,
that is, try to match the features from the image with a model. To reconstruct the 3D
space using 2D images the features detected must be fitted in the model, which is usually
done using a non-linear least square method, searching to minimize the reprojection error

(WU et al., 2011).

Being x a vector of parameters and f the cost function, the following expression is

minimized by the least square problem:

k
z* = argmin y_ | fi(z)]]? (5.36)
ri=1

The most used method to solve the nonlinear least square estimation problem is
the Levenberg-Marquardt method. It uses a trust-region approach to find a minimum,
and when this minimum is found another trust region is build, this time around the point
recently found, and the process start again. The LM method can be seen as a blend of
the gradient descent method, (5.37), and the Gauss-Newton method, which performs a

quadratic approximation.

The gradient descent method presents many problems with the step size, causing
convergence issues (ROWEIS, 1996). For this reason the Gauss-Newton method uses
second-order information to speed-up convergence. The approximation in the equation
(5.39) is applied in the equation (5.38) to obtain (5.40). This approximation is used due

to the difficulty of calculate the Hessian matrix. Moreover, the first term of the equation

46 Chapter 5. Robot’s path estimation

(5.39) usually dominates the second one (NOCEDAL; WRIGHT, 2006).

(@ip1 — @) - V2 f(2:) = =V f(2;) (5.38)
Vi f(x) =)+ Z fi(@)V2 fi(@) = J(x)" I (x) (5.39)
J(@)' J(2) (41 — 23) = —J ()" (5.40)

The equation 5.41 represents the Levenberg-Marquardt method, where the A factor
controls the composition between the Newton-Gauss and the gradient descent method.
Bigger it is, the method behaves like the gradient descent, closer to the zero means that

he is basically the Newton-Gauss method.

5.3 PTAM framework

PTAM stands for parallel tracking and mapping and its described in (KLEIN;
MURRAY, 2007). Considering the probabilistic techniques, FastSLAM for example, this
application has one vital difference, the complete separation between tracking and mapping.

This allows a more precise update on the mapping and a more robust tracking.

Other implementations of SLAMSs solutions, like the EKF-SLAM (SMITH; CHEESE-
MAN, 1986) or even the FastSLAM (MONTEMERLO; THRUN, 2007) itself are imple-
mented for the use with robots, which implies precise control of the velocity and odometry
feedback. They are not suitable for cellphone cameras, for example, since they don’t have

a trustworthy odometry feedback and can move much faster that robots. It is exactly for
this use case that the PTAM was created (KLEIN; MURRAY, 2007).

The division between tracking and mapping have consequences in both processes.
The tracking is free to use the map without having to wait for updates and any type of
tracking can now be used. As for the mapping it do not need to be update at every frame,
eliminating redundancies that exists in sequential images and giving the mapping process
has more time to use a precise refinement and update method. In the figure 7 one can see

the PTAM execution with the map points displayed in the camera image.

5.3.1 Tracking

Considering that a map was already been created (map initialization will be treated

in the Mapping section), this operation can be divided in the following steps:

5.8. PTAM framework 47

PTAM =] x

Tracking Map, quality good. Found: 329/330 0/0 0/0 0/0 Map: 330P, ZKF

Figure 7 — PTAM window

1. A pose estimation is made with the new frame.

2. All the map points are projected in the image.

3. A few coarsest-scale features are searched in the image.
4. The camera pose estimate is updated using the matches.
5. Many features are again searched in the image.

6. A final pose is estimated.

5.3.1.1 Map projection points

To project the points of the map to the image the coordinate system should be
changed and the camera model should be applied. The first is just a multiplication by a
homogeneous 4x4 matrix, expressed by (5.42). Then the pin-hole model is applied to the
3D point. The radial distortion is accounted for in (5.43), using (5.44) and (5.45).

Pic = Ecwpjw (5.42)

48 Chapter 5. Robot’s path estimation

U fu O |2

CP(p..) = + N 5.43

)= ||+ | fj T H (5.49
x? + 32
r=y\ 0 (5.44)
1 w

g 2 tan — 4

= arctan (rtan 2) (5.45)

5.3.1.2 Patch Search

The pixels patch stored in each map point is warped to account for viewpoint
changes, by multiplication using the matrix 5.46. The point (us,vs) corresponds to hori-
zontal and vertical displacements in the patch’s original level and the point (u.,v.) in the

zeroth level of the current frame.

duc Suc

_ | dus Ovs
A= |Su (5.46)

dus Ovs

The matrix A is calculated using three projections. The first projection made is
the unit pixel displacement in the source keyframe into the patch’s plane, then this is
projected in the current frame. Matching is done evaluating the zero-mean SSD scored for

each corner location. If the smallest score is lower than a threshold, the match is positive.

5.3.1.3 Pose Update

Using the set of matched observations the camera pose is calculated minimizing
the error of a robust objective function of the reprojection error, equation (5.47), e; being

the reprojection error. We consider the Tukey bi-weight objective function.

! — arg mi ((ledl
p' = arg mﬁnz Obj (- ,0T> (5.47)

jES j

5.3.1.4 Repetition of the patch search and pose update

As said in the beginning of section 5.3.1 the patch search and pose update are done
twice, so at the final of pose update a bigger set of patches from map points are searched

in the image. After that, the final pose is estimated.

The quality of the tracking is evaluated at each frame, and if it is not acceptable,
the system do not create more keyframes with low quality. If even so the tracking reference
is considered lost, then the initialization procedure must be redone (it will be explained in

the mapping section).

5.8. PTAM framework 49

5.3.2 Mapping

The mapping procedure is divided in two steps, the initialization and the expansion.
All the procedures are explained in the figure 8. The map initialization procedure consists

only in the capture of two frames translated from 10 centimeters from one to another.

Figure 8 — Mapping thread, taken from (KLEIN; MURRAY, 2007)

Stereo initialisation

Update keyframe
data association

Y

Integrate
keyframe

Local
bundle adjust

Y

Add new
features

Global
bundle adjust

Update
data association

Sleep 5ms

5.3.2.1 Map expansion

The map is expanded, after the initialization, by the addition of keyframes. They
are frames used to describe the environment and from them the points of the map are

extracted. These keyframes have the following structure:

o A transformation matrix from the frame to the world coordinate system, Eew.

o A four level pyramid of greyscale images, dividing the frame dimensions by two at

each level.

If three conditions are respected, a common frame is added to the map as a

keyframe:

1. Tracking quality is good.
2. Time after the last keyframe capture is bigger than 20 frames.

3. The camera must be at a minimum distance from the closest frame.

50 Chapter 5. Robot’s path estimation

Each point of the map, called here a feature, represents a distinct characteristic

about the environment. They are represented by the following data structure:

 Coordinates (z;w, Yjw, Zjw, 1) in the world coordinate system.
« An unit patch normal n;

» Reference for the patch source pixels.

The process to add information from a keyframe to a map starts by applying
the FAST corner detector to each pyramid level of the keyframe. Then non-maximal
suppression and thresholding based on Shi-Tomasi score is then applied to detect the most
salient points. Non-maximal suppression consists on an algorithm that eliminates points

that do not lie in important edges.

From the remaining set the points close to an already detected point map are
eliminated. Then the set is a candidate to be added to the map. One parameter remains to
be found: the depth. For this a triangulation is necessary. The closest keyframe is chosen
for the operation and the correspondences are made using epipolar search. If a match is

detected then the triangulation is executed and the point is added to the map.

5.3.2.2 Bundle adjustment and data association refinement

Bundle adjustment refines the map using new measurements. The minimization
of the equation 5.48 is done using the Levemberg-Marquardt bundle adjustment method.
When the number of keyframes already saved is high and new keyframes are being added,
the full bundle adjustment becomes too slow for real time execution. In this case only the

local bundle adjustment is executed, just the closest points of the map are updated.

When no keyframes are added, the mapping thread refines the map. To find the
depth of a candidate point it is only used two frames, but these points may be present
in other keyframes as well. If the measurement is successful, it is also added to the map.

Outliers in the form of measurements are also detected, using the Tukey estimator.

{(py - py), (' D')} = arg mm Z > Obj <|]’ 0T> (5.48)

’L 1j5€8;

5.4 Our choice of algorithm

Numerous factors must be considered to make a correct choice. Considering the
complexity of both methods the particle filter has an updating cost of O(M log(N)), M
being the number of particles necessaries for convergence and N the number of landmarks
or features (ROLLER et al., 2003) but the bundle adjustment has normally a quadratic cost

5.4. Our choice of algorithm 51

(TRIGGS et al., 2000). Although, with the help of new methods to reduce the complexity
of the BA, particularly in the SLAM case, linear complexity can be achieved (STRASDAT;
MONTIEL; DAVISON, 2012).

Due to the use of the Marquardt-Levenberg non-linear estimator the BA is more
precise than filtering, in comparison with the EKF implementation (STRASDAT; MON-
TIEL; DAVISON, 2010). The principal difficulty encountered concerning the comparison
and the decision process is the lack of a common benchmark to test all the SLAM solutions.
Scientific article results usually are not compatible nor comparable, thus we cannot affirm
that one method is better than the other. This situation gets more complex if we consider
that the simplifications for the reduction of the BA complexity cited in the previous

paragraph can affect the precision.

The articles (MONTEMERLO et al., 2002) and (ROLLER et al., 2003) introduce
FastSLAM, which is an implementation of the particle filter for the SLAM problem. In
this work one can see the performance of the particle filter to estimate the robot’s path,
even if one particle is used, we have a good estimation (1 to 2 meters of RMS (Root Mean
Square) error in a trajectory that have order of kilometers). And the size of the dataset

used shows us that this method does not have problems with the use of many features as
the EKF has.

Another great advantage of this method is the possibility of use a simple likelihood
method for the data association, instead of other complex methods, like the nearest
neighbour (NN) or the joint compatibility brand and bound (JCBB). The article (DAVISON
et al., 2007) shows an implementation of the EKF for SLAM, but presents more details
about map generation that the FastSLAM articles.

One solution that uses the bundle adjustment that can be pointed out is the
PTAM framework (KLEIN; MURRAY, 2007). One of the biggest advantages of the bundle
adjustment techniques is the possibility to separate the tracking step from the mapping
step, which is exploited in this framework. But before the nonlinear least-square estimation
method, one needs to execute data association, normally using the NN or the JCBB
method. A parallel structure for these methods are not simple to be obtained as for particle

filter, which poses another problem for our implementation.

Considering that we want to implement the SLAM solution with GPU, we need a
parallel form of the solution, which the particle filter can offer. We also have just three
months to implement it, an interval of time too short to implement an high complex
algorithm like the FastSLAM, therefore the adoption of the bundle adjustment, represented
by the PTAM framework, makes more sense. Thinking about the performance and precision
obtained by this framework, we can affirm that is better than any other SLAM solution
presented until this day (not considering DenseSLAM algorithms) (KLEIN; MURRAY,
2007).

53

6 Implementation

6.1 TUM AR.Drone ROS package

The ROS application created by the Technische Universitat Miinchen for the
AR.Drone uses the frontal monocular camera and the odometry sensors to execute off-
board SLAM, communication is carried through Wi-Fi to communicate with computer.
This program estimates the scale of the SLAM system, then uses the position calculated
by the PTAM framework to feed an EKF filter, taking into account the position of the

drone. The map management is done exclusively by PTAM.

The control of the drone is also calculated using the parameters estimated by the
EKF using a PID controller. The main features of this program are the scale estimation, the
sensor information fusion and the controller implementation. In the figure 9 the interface
of the package, with the PTAM screen at the right side below the map.

Send Commands Node Communication Status
autolnit 500 800 Drone Navdata: 200 Hz
Drone Control: 5 Hz
Pose Estimates: 30 Hz
Joy Input: 0 Hz
Pings (RTT): 10 (500B), 22 (20kB)
Motors: 169.000000 157.000000 1t
Autopilot Status:
Idie (Queue: 0)
Current: goto-0.74 1.13 0.79 -15.14
Next: NULL
Target: (-0.74, 1.13, 0.79),-15.1
Error: (-0.97, 0.98, 0.00), 14.3 (.| 1.38)
Stateestimation Status:
PTAM: Good
Map: KF: 3, KP: 201 (48 of 201 found)

Scale: 1.488 (2 in, 0 out), acc: 0.53 I
ScaleFixpoint: FIX
Drone Status: Hovering (54 Battery)
Load File: |autolnitAndlLand.txt v
Control Souree:
Clear and Send | Clear | Send Reset Keyboard Joystick

Autopilot ® None
Land Takeoff | Emergency Toggle Cam| FIatTrim | co onboard Hovering
Messages ¥ Ping Drone (every 1s) Drone Pose: xyz=(0.26, 009, | 0.77), _ rpy=(-358

sent: LAND

sent: Takeoff

sent: Takeoff

Autopilot: Cleared Command Queue
New Target: xyz = -0.739, 1.133, 0.790, yaw=-15.140
PTAM initialization started (took first KF)
PTAM initialized (took second KF)

locking scale fixpoint to -0.384 0.193 0.740

PTAM Drone Camera Feed

Tracking Map, quality poor. Found: 39/198 0/2 0/1 0/0 Map: 201P, 3KF
Quality: good scale: 1488 (acc: 0.526) PTAM time: 5 ms (5 ms total)

Figure 9 — Tum package

6.1.1 Scale information

At each measurement interval (which is different for the camera and the odometry

sensors, but here we will assume that they are equal for the sake of simplicity) the drone

54 Chapter 6. Implementation

sends for the PC a sample pair (z;,y;), x; being scaled with the visual map (PTAM) and
y; in metric units. Since both are related with the motion of the drone, we can affirm that

T =Ny,

Assuming that these measurement samples are isotropic and with Gaussian white

noise, they can be represented by equations (5.48) and (6.1).

Then a maximum likelihood estimation is used to estimate the mean of the
distribution and the scale. Equation (6.3) is the expression of the negative log-likelihood,

and by first minimizing over the means and after over A a global minimum is achieved.

122 (2 — Am 2y — al)?
L,y o, A) X = : 3 (” H + | — | (6.3)
n Yy

Concerning the generation of the samples, the sensors have different sampling
frequencies, therefore a compensation mechanism must be implemented to allow the use
of compatible sample value. Since the altimeter from the drone is the most precise sensor,
the altitude is the measurement used for the scale estimation. The metric sensor is faster
so at each visual measure a mean of all the metric values not used is made. Then the
distance traveled within some timespan is calculated. This value, in meters and in the

video scale, is used for the scale estimation.

6.1.2 Sensor information fusion

The EKF is used to update the estimated pose with all the data collected, from the
PTAM and from the sensors. The fusion of all this information occurs in the definition of

the prediction and the observation model. Concerning the prediction model, the following

6.1. TUM AR.Drone ROS package 55

model is used:

Tgr1 Ty Ty

Yet1 Yt Yt

241 2 2

Tpq1 Ty ClR(q)ta Oy, \I’t)l,?, — oy

?%t—&—l - ?%t 46t c1R(Py, ®Tt’ %)2,‘3 — Colty (6.4)
Zt+1 2t Crzt — Cgzt

Dpyy d, c3®; — 4P,

Ot o, 30 — €40,

| (W Rz
¢[t+1 _‘i’t_ i 05‘1’15 - Cﬁ‘i’t |

¢; are constants calibrated before execution, the parameters with a bar are the
control effort sent to the drone in the last iteration and the parameters denoted by
R(®,, 0, U,), 5 are the elements 7, 3 from the rotation matrix defined by roll, pitch and

yaw.

Then we have the observation model for the odometry and the PTAM. The first are
represented by equations (6.5) and (6.6). Since the drone measures the horizontal velocity
in its own referential, the yaw must be taken into account in the measurement function.
The pitch and roll are given by the direct lecture from the sensor and the yaw and vertical
velocity are calculated from the yaw and height directly to account for uneven ground and

yaw-drift.

h0<$t) = |:.I't COS \Ijt — yt sin \Ijtit sin \Ijt -+ Z)t COS \Ijtét@t@t@t} (65)

~ ~ ~ ~ T
he — ey o - %—mtj 66)

Rot = @r,taﬁy,h y Xty Tty
(o o

The scaling factor A* is used with the PTAM’s pose to transform to the coordinate
system of the drone, as showed by equation (6.7). The matrix E¢, refers to the camera
pose in SE(3) and Epc the transformation from the camera referential to the drone’s. f is

the conversion from SE(3) to the roll-pitch-yaw representation.

hp(@e) = (24, Y, 21, Dy, O, Uy)" (6.7)
zpy = [(EpcEcy) (6.8)

The EKF predicts the pose of the drone also considering the delays involved in the

Wi-Fi communication and the time spend by control signal calculation.

o6 Chapter 6. Implementation

6.1.3 Control

The control implemented for the drone will be quickly shown here because it is
outside the scope of this work. With the actual position (,7, 2, @)T and the predicted

point x; ., ..., the controller is implemented by the equation (6.9):

o R(V) % (0.5((x) — z) + 0.324)

O| _ | R()x(05((y) —y) +0.327) 69)
2 0.6(2 — 2) +0.2¢ 4+ 0.01 [(2 — 2) '
o 0.02(V —)

6.2 Analysis of the TUM package

The objective of this work is to apply parallelism to the SLAM problem. Studying
what the TUM package does we can easily see that there isn’t much room for parallelism,
since the scale estimation, EKF and the control calculation have a sequential structure.
That does not mean it is impossible to optimize the code with GPU processing, it just

creates a doubt about the level of improvement.

Normally for a code to be accelerated with a GPU it should have big independent
loops with rather simple operations or many independent structures to present a significant
gain in performance and to compensate the overhead caused by the memory allocation
in the GPU and the copy of all the necessary data. This is why the GPU acceleration is
nowadays more popular in operations with images, for example. Feature detectors that
operates in GPU present are many times faster than ones using CPU, and this can allow

real-time execution of computational expensive algorithms like SURF.

Inside the PTAM framework there is many structures that can be parallelized.
The feature extraction is an obvious example, but we also have certain operations in
the tracking and mapping. Execute the mapping and the tracking thread in the GPU,
although, is not a good idea, since the GPU has a lower clock than the CPU and therefore
takes more time to deal with complex instructions. In the GPU the processing power is

sacrificed in the expense of higher parallelism.

At the start of the keyframe preparation the PTAM uses the FAST corner detection
to extract the features from the current frame. This is done four times for each frame,
since a 4-level pyramid must be created, and the CVD library is used, where the FAST is
implemented in CPU. We changed this function and made necessary adaptations on the

code to use the OpenCV implementation in GPU of the same algorithm.

Another area from the PTAM that can be parallelized is the search for patches in
the tracking operation. After the calculation of a prior pose and the projection of the map

points in the camera centered referential, the map-points are selected to be searched in

6.2. Analysis of the TUM package 57

the image. This is another operation that can be parallelized and probably will present a
huge gain in performance, since in one step of the tracking the search is done twice, one
time with a smaller number of points (in the order of 50) and after with more points (in
the order of 1000).

It is important say that functions from the library CVD uses SIMD (Single instruc-
tion, multiple data) parallelism in the CPU and tries to optimize as much as possible the
CPU code (using the SSE3 instruction set, for example). This can increase the velocity of
calculation up to a level superior to the GPU, since the copy overhead delay is significant.
Maybe for some GPUs models the FAST implemented in the CPU can be faster. But in
the case of the patch search it is almost certain that the GPU will be faster due to the
dimension of the loop (order of 1000). We will not enter in the discussion of the differences
of implementation of the FAST corner detection in CVD and OpenCV because it goes
beyond the scope of this work.

99

7 Test and results

7.1 Comparison between feature detection algorithms

During preliminary stages of the project we wanted to test different feature detec-
tion algorithm, namely: SURF, ORB and BRISK, to better assert their usefulness and
correspondence to our needs. Examples of the kind of features that each detects are show
in Figure 10. This test was carried on an AR.Drone 1.0 using a 65 seconds obtained from

the drone’s frontal camera (each frame has 320x240 pixels).

(a) SURF (b) ORB | (c) BRISK

Figure 10 — Feature detection examples for each tested algorithm.

Moreover, we varied each algorithm’s parameters to verify how them influences the
number of detected features and execution time. Results are show in Figure 11 and were
obtained using the notebook described in next section.

SURF Work Space ORB Work Space BRISK Work Space

nFeatures (average)
nFeatures (average)
nFeatures (average)

160 T80 300 400
fps (average) fps (average) fps (average)

(a) SURF (b) ORB (c) BRISK

Figure 11 — Frames per second versus the number of features for each algorithms.

7.2 FAST Benchmark

We benchmarked the mean execution time for the FAST algorithm implemented

both in CPU and GPU. A sequence of video frames captured by the drone were used in

60 Chapter 7. Test and results

region rich on features. Moreover, we run the benchmark on two different configurations:

1. A notebook using:

o Intel® Core™ i7-4700MQ CPU @ 2.40GHz
e Nvidia GeForce GTX 770M

2. A desktop using:

e Intel® Core™ i7-980X CPU @ 3.33GHz
e Nvidia GeForce GTX 980

The following results were obtained:

CPU GPU
Frequency 1258.3 Hz | 578.9 Hz

Level 0| o of features | 3386.6 | 2884.8
Frequency 3681.9 Hz | 1556.7 Hz

Level 1 | N° of features 1300.8 1292.0
Frequency 8652.3 Hz | 3895.2 Hz

Level 2 | N° of features 648.4 649.2
Frequency 17373.6 Hz | 5704.6 Hz

Level 3 | N° of features 386.1 175.1

Table 1 — Results using the desktop

CPU GPU
Frequency 908.6 Hz 542.5 Hz

Level 0 | N° of features 3384.6 1786.2
Frequency 26199 Hz | 1057.5 Hz

Level 1 | N° of features 1299.9 899.6
Frequency 6149.4 Hz | 2508.0 Hz

Level 2 | N° of features 647.9 600.7
Frequency 11678.0 Hz | 3982.8 Hz

Level 3 | N° of features 385.9 167.9

Table 2 — Results using the notebook

61

8 Analysis

8.1 Comparison between feature detection algorithms

With this test we wanted to show that feature detection could be done in real-time,
that we processed frames faster than the drone send them. As video is received ate 20H z,

it’s clear that all algorithms respected the real-time constrain.

It’s important to note that only SURF and ORB were implemented at GPU,
while BRISK only had a CPU implantation at the time of tests. The reason for testing
BRISK was to assert if all the good results that it showed on literature translated to
our use-case and only then expend development time on producing a GPU-based BRISK
implementation. And we can see that it is generally the fastest of all tested algorithms,

but unfortunately it comes with a cost: fewer features.

Therefore, given BRISK’s not so expressive gains in processing time in the workspace
where it has a compatible number of detected features with the others algorithms we
choose not to port it to GPU.

Finally, after some following project decision we finished by using a GPU-based
implementation of the FAST feature detection algorithm that will be discussed in the

following section.

8.2 PTAM at GPU tests

Before discussing over the results, it is worth noting that at each level the dimension
of the image is divided by two. Starting with a 640x480 image, the dimensions at the
following levels are: 320x240, 160x120 and 80x60.

The term time refers to the mean time necessary to process a frame. In all times
we can see that the parallelization does not compensate the overhead caused by the data
transfer from the CPU to the GPU and vice versa, this is more expressive in the small
images. In the desktop case the time to process one frame in the level 4 is almost three
times slower in the GPU, but in the level 0 it is approximately two times slower. Probably
if we were dealing with high-definition images the GPU execution would be faster. Another
point that need to be raised is that the FAST detector was created to be lightweight
(ROSTEN; DRUMMOND, 2006) and the CVD library optimizes as much as possible the
CPU code (it uses SSE2 instruction set).

In the case of the desktop the almost same quantity of features are observed in

62 Chapter 8. Analysis

both CPU and GPU, since we adjust the threshold value of the FAST (GPU) detector
adding an offset of 5. This value is used to classify if a pixel is in a corner or not, which
takes in consideration the intensity of the gray-scale image. We the same threshold from
the notebook test but a slightly higher offset of 10, and the difference between the quantity
of features detected in that case is significant. This can be caused by differences between
implementations in the CVD library and the OpenCV or due to some imprecision in the

hardware.

It won’t be the first time that an algorithm in CPU gives a different result that o the
same implemented in GPU. The SURF feature extraction algorithm is also implemented in
CPU and GPU inside OpenCV and it is well know that some differences can be observed

depending which implementation is used.

63

O Conclusion

During this project we had to use many subjects and techniques that aren’t seen
or taught in our graduation course. Particle filters, nonlinear optimization, heterogeneous
programming are only a few examples of the topics that we had to study to complete this

project. An extensive research was made about the subjects in question.

In the search for a SLAM solution that is precise and lightweight at the same time,
two alternatives standed-out: bundle adjustment or particle filter. Both has advantages
and inconveniences, but considering the period that we had to implement this project we
chose the BA as solution, even if the particle filter structure has a more parallel structure
than the latter. However, the BA method shown more recently a more precise solution

splitting the tracking and mapping in two separate operations.

To implement the parallelization we sent some operations that are normally executed
in the CPU by the PTAM framework to the GPU. The feature extraction was entirely
changed for a GPU-based implementation. Aiming to test this configuration with real
use-case, we used a drone. In this context the ROS, Robotic Operation System, a framework
that allows the implementation of interfaces between nodes, in our case the PC and the
drone, was used, together with a package implemented by the Technische Universitat
Miinchen specifically for the AR.Drone that uses the PTAM to generate and manage the

map.

The results of our test shown us that the overhead caused by the memory allocation
in the GPU is significant, therefore this instrument should be used only when we have HD
images, that has much more pixels than our image. Considering this result it can be seen

too the level of optimization and speed of the PTAM framework only with CPU use.

65

Bibliography

ALAHI, A.; ORTIZ, R.; VANDERGHEYNST, P. Freak: Fast retina keypoint. In: IEEE.
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. [S.1],
2012. p. 510-517. Citado na pagina 19.

AMAZON. Amazon Dash. 2015. Disponivel em: <https://fresh.amazon.com/dash/>.
Citado na péagina 25.

AMAZON. Amazon Prime Air. 2015. Disponivel em: <http://www.amazon.com/b?
node=8037720011>. Citado na pagina 25.

ARULAMPALAM, M. S. et al. A tutorial on particle filters for online nonlinear /non-
gaussian bayesian tracking. Signal Processing, IEEE Transactions on, IEEE, v. 50, n. 2, p.
174-188, 2002. Citado na pagina 38.

AZARBAYEJANI, A.; PENTLAND, A. P. Recursive estimation of motion, structure, and
focal length. Pattern Analysis and Machine Intelligence, IEEE Transactions on, IEEE,
v. 17, n. 6, p. 562-575, 1995. Citado na pagina 35.

BAILEY, T.; DURRANT-WHYTE, H. Simultaneous localization and mapping (slam):
Part ii. IEEE Robotics €& Automation Magazine, v. 13, n. 3, p. 108-117, 2006. Citado na
pagina 19.

BAY, H. et al. Speeded-up robust features (surf). Computer vision and image
understanding, Elsevier, v. 110, n. 3, p. 346-359, 2008. Citado 2 vezes nas paginas 20
and 33.

BEHLEY, J.; STEINHAGE, V.; CREMERS, A. B. Performance of histogram descriptors
for the classification of 3d laser range data in urban environments. In: IEEE. Robotics and
Automation (ICRA), 2012 IEEE International Conference on. [S.1.], 2012. p. 4391-4398.
Citado na pagina 33.

BURGARD, W. et al. Estimating the absolute position of a mobile robot using position
probabilitygrids. In: Proceedings of the National Conference on Artificial Intelligence. [S.1.:
s.n.], 1996. Citado na péagina 22.

CALONDER, M. et al. Brief: Binary robust independent elementary features. In:
Computer Vision-ECCV 2010. [S.1.]: Springer, 2010. p. 778-792. Citado 2 vezes nas
paginas 20 and 33.

DAVEY, S. J. Simultaneous localization and map building using the probabilistic
multi-hypothesis tracker. Robotics, IEEE Transactions on, IEEE, v. 23, n. 2, p. 271-280,
2007. Citado na pagina 21.

DAVISON, A. J. Real-time simultaneous localisation and mapping with a single camera.
In: IEEE. Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on.
[S.1], 2003. p. 1403-1410. Citado na pagina 35.

https://fresh.amazon.com/dash/
http://www.amazon.com/b?node=8037720011
http://www.amazon.com/b?node=8037720011

66 Bibliography

DAVISON, A. J. et al. Monoslam: Real-time single camera slam. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, IEEE, v. 29, n. 6, p. 1052-1067, 2007.
Citado 2 vezes nas paginas 42 and 51.

DELLAERT, F. et al. Monte carlo localization for mobile robots. In: IEEE. Robotics and
Automation, 1999. Proceedings. 1999 IEEE International Conference on. [S.1.], 1999. v. 2,
p. 1322-1328. Citado na péagina 22.

DOUCET, A. et al. Rao-blackwellised particle filtering for dynamic bayesian networks. In:
MORGAN KAUFMANN PUBLISHERS INC. Proceedings of the Sixteenth conference on
Uncertainty in artificial intelligence. [S.1.], 2000. p. 176-183. Citado 2 vezes nas paginas
38 and 309.

DOUCET, A.; JOHANSEN, A. M. A tutorial on particle filtering and smoothing: Fifteen
years later. Handbook of Nonlinear Filtering, Oxford, UK: Oxford University Press, v. 12,
p. 656704, 2009. Citado na pagina 36.

DURRANT-WHYTE, H.; BAILEY, T. Simultaneous localization and mapping: part i.
Robotics € Automation Magazine, IEEE, IEEE, v. 13, n. 2, p. 99-110, 2006. Citado 2
vezes nas paginas 18 and 21.

EADE, E. Monocular simultaneous localisation and mapping. Tese (Doutorado) —
University of Cambridge, 2009. Citado na pagina 42.

EADE, E.; DRUMMOND, T. Scalable monocular slam. In: IEEE. Computer Vision and
Pattern Recognition, 2006 IEEE Computer Society Conference on. [S.1.], 2006. v. 1, p.
469-476. Citado 2 vezes nas paginas 42 and 43.

ELFES, A. Using occupancy grids for mobile robot perception and navigation. Computer,
IEEE, v. 22, n. 6, p. 46-57, 1989. Citado na péagina 19.

ENGEL, J.; STURM, J.; CREMERS, D. Scale-aware navigation of a low-cost quadrocopter
with a monocular camera. Robotics and Autonomous Systems, Elsevier, v. 62, n. 11, p.
1646-1656, 2014. Citado na pagina 23.

FEDER, H. J. S. Simultaneous Stochastic Mapping and Localization. Tese (Doutorado) —
Massachusetts Institute of Technology, 1999. Citado na pagina 18.

GRAUMAN, K.; LEIBE, B. Visual object recognition. [S.1.]: Morgan & Claypool
Publishers, 2010. Citado na pagina 33.

HOFMANN-WELLENHOF, B.; LEGAT, K.; WIESER, M. Navigation: principles of
positioning and guidance. [S.1.]: Springer Science & Business Media, 2011. Citado na
pagina 17.

JENSFELT, P.; CHRISTENSEN, H. I.; ZUNINO, G. Integrated systems for mapping and
localization. In: ICRA-02 SLAM Workshop. IEEE. [S.1.: s.m.], 2002. Citado na péagina 19.

JULIER, S. J.; UHLMANN, J. K. New extension of the kalman filter to nonlinear systems.
In: INTERNATIONAL SOCIETY FOR OPTICS AND PHOTONICS. AeroSense’97.
[S.L], 1997. p. 182-193. Citado na pagina 22.

Bibliography 67

JULIER, S. J.; UHLMANN, J. K. A counter example to the theory of simultaneous
localization and map building. In: IEEE. Robotics and Automation, 2001. Proceedings
2001 ICRA. IEEFE International Conference on. [S.1.], 2001. v. 4, p. 4238-4243. Citado
na pagina 35.

KLEIN, G.; MURRAY, D. Parallel tracking and mapping for small ar workspaces.
In: TEEE. Mized and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM

International Symposium on. [S.1.], 2007. p. 225-234. Citado 6 vezes nas paginas 11, 20,
35, 46, 49, and 51.

LEUTENEGGER, S.; CHLI, M.; SIEGWART, R. Y. Brisk: Binary robust invariant
scalable keypoints. In: IEEE. Computer Vision (ICCV), 2011 IEEE International
Conference on. [S.1.], 2011. p. 2548-2555. Citado 2 vezes nas paginas 19 and 20.

LOURAKIS, M. I.; ARGYROS, A. et al. Is levenberg-marquardt the most efficient
optimization algorithm for implementing bundle adjustment? In: IEEE. Computer
Vision, 2005. ICCV 2005. Tenth IEEE International Conference on. [S.1.], 2005. v. 2, p.
1526-1531. Citado na pagina 45.

LOWE, D. G. Object recognition from local scale-invariant features. In: IEEE. Computer
vision, 1999. The proceedings of the seventh IEEE international conference on. [S.1.], 1999.
v. 2, p. 1150-1157. Citado na pagina 33.

LOWE, D. G. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, Springer, v. 60, n. 2, p. 91-110, 2004. Citado na pagina 20.

MONTEMERLO, M.; THRUN, S. FastSLAM: A scalable method for the simultaneous
localization and mapping problem in robotics. [S.1.]: Springer, 2007. v. 27. Citado 2 vezes
nas paginas 44 and 46.

MONTEMERLO, M. et al. Fastslam: A factored solution to the simultaneous localization
and mapping problem. In: AAAI/IAAL [S.1.: s.n.], 2002. p. 593-598. Citado na pégina 51.

MONTIEL, J.; CIVERA, J.; DAVISON, A. J. Unified inverse depth parametrization for
monocular slam. analysis, v. 9, p. 1, 2006. Citado na pagina 43.

MUR-ARTAL RAUL, M. J. M. M.; TARDOS, J. D. ORB-SLAM: a versatile and accurate
monocular SLAM system. IEEE Transactions on Robotics, v. 31, n. 5, p. 1147-1163, 2015.
Citado 3 vezes nas paginas 20, 26, and 33.

NEIRA, J.; TARDOS, J. D. Data association in stochastic mapping using the joint
compatibility test. Robotics and Automation, IEEE Transactions on, IEEE, v. 17, n. 6, p.
890-897, 2001. Citado 3 vezes nas paginas 20, 21, and 44.

NEUBECK, A.; GOOL, L. V. Efficient non-maximum suppression. In: IEEE. Pattern
Recognition, 2006. ICPR 2006. 18th International Conference on. [S.1.], 2006. v. 3, p.
850-855. Citado na pagina 34.

NOCEDAL, J.; WRIGHT, S. Numerical optimization. [S.l.]: Springer Science & Business
Media, 2006. Citado na pagina 46.

NVIDIA. NVIDIA® Tegra® X1. [S.1.], 2015. Citado na pagina 26.

68 Bibliography

ROLLER, D. et al. Fastslam 2.0: an improved particle filtering algorithm for simultaneous
localization and mapping that provably converges. In: Proceedings of the International
Joint Conference on Artificial Intelligence. [S.1.: s.n.], 2003. Citado 2 vezes nas paginas 50
and 51.

ROSTEN, E.; DRUMMOND, T. Machine learning for high-speed corner detection. In:
Computer Vision-ECCV 2006. [S.1.]: Springer, 2006. p. 430-443. Citado 4 vezes nas
paginas 20, 33, 34, and 61.

ROWEIS, S. Levenberg-marquardt optimization. Notes, University Of Toronto, 1996.
Citado na pagina 45.

SFU, A. L. at. Ardrone autonomy a ROS driver for Parrot AR-Drone 1.0 and 2.0
quadrocopters. 2015. Disponivel em: <http://github.com/AutonomyLab/ardrone
autonomy>. Citado na pagina 41.

SMITH, A. et al. Sequential Monte Carlo methods in practice. [S.1.]: Springer Science &
Business Media, 2013. Citado na pagina 36.

SMITH, R. C.; CHEESEMAN, P. On the representation and estimation of spatial
uncertainty. The international journal of Robotics Research, Sage Publications, v. 5, n. 4,
p. 56-68, 1986. Citado na pagina 46.

STRASDAT, H.; MONTIEL, J.; DAVISON, A. J. Real-time monocular slam: Why filter?
In: IEEE. Robotics and Automation (ICRA), 2010 IEEE International Conference on.
[S.L], 2010. p. 2657-2664. Citado na pagina 51.

STRASDAT, H.; MONTIEL, J. M.; DAVISON, A. J. Visual slam: why filter? Image and
Vision Computing, Elsevier, v. 30, n. 2, p. 65-77, 2012. Citado 4 vezes nas paginas 23, 35,
36, and 51.

THRUN, S.; BURGARD, W.; FOX, D. Probabilistic Robotics. MIT Press, 2005. ISBN
9780262201629. Disponivel em: <http://books.google.fr/books?id=2Zn6AQAAQBAJ>.
Citado 3 vezes nas paginas 22, 40, and 44.

TRIGGS, B. et al. Bundle adjustment—a modern synthesis. In: Vision algorithms: theory
and practice. [S.1.]: Springer, 2000. p. 298-372. Citado 2 vezes nas paginas 45 and 51.

WAN, E. A.;; MERWE, R. V. D. The unscented kalman filter. Kalman filtering and neural
networks, New York: Wiley, p. 221-280, 2001. Citado na pagina 22.

WU, C. et al. Multicore bundle adjustment. In: IEEE. Computer Vision and Pattern

Recognition (CVPR), 2011 IEEE Conference on. [S.l.], 2011. p. 3057-3064. Citado na
pagina 45.

http://github.com/AutonomyLab/ardrone_autonomy
http://github.com/AutonomyLab/ardrone_autonomy
http://books.google.fr/books?id=2Zn6AQAAQBAJ

	Title page
	Approval
	Dedication
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Navigation systems
	SLAM problem formulation
	Feature detection
	Data association
	Sensor data fusion
	SLAM solution proposition

	Motivation
	Amazon Dash and Prime Air
	Car automation
	Presence systems
	Jetson TX1
	Closing Arguments

	Requirement analysis
	Design Requirements
	Functional Requirements
	Non-Functional Requirements
	Performance Requirements
	Proposed Architecture
	Required material

	Feature extraction
	Detection and description algorithms

	Robot's path estimation
	Particle Filter
	Posterior distributions
	Monte Carlo Sampling
	Sequential Importance Sampling
	Structure of the FastSLAM algorithm
	Image depth estimation
	Drone odometry and state prediction
	EKF filter
	Sampling the proposal distribution
	Data association method
	Resampling method and estimation of pose

	Bundle Adjustment
	PTAM framework
	Tracking
	Map projection points
	Patch Search
	Pose Update
	Repetition of the patch search and pose update

	Mapping
	Map expansion
	Bundle adjustment and data association refinement

	Our choice of algorithm

	Implementation
	TUM AR.Drone ROS package
	Scale information
	Sensor information fusion
	Control

	Analysis of the TUM package

	Test and results
	Comparison between feature detection algorithms
	FAST Benchmark

	Analysis
	Comparison between feature detection algorithms
	PTAM at GPU tests

	Conclusion
	Bibliography

